Derivatives of the Algebraic Polynomials of Best Approximation

Maurice Hasson*
Depariment of Mathematics, University of Rhode Island, Kingston, Rhode Island $0288:$
Comrnumicated by G. G. Lorentz
Received June 1, 1978
DEDICATED TO THE MEMORY OF P. TURÁN

I. Introduction

Let $C[a, b]$ be the space of continuous real valued functions defined on the compact interval $[a, b]$, endowed with the supremum norm denoted by $\|\|$ Let P_{n} be the algebraic polynomial of degree at most n of best approximation to $f \in C[a, b]$. The main purpose of this paper is the investigation of the behavior, as $n \rightarrow \infty$, of $\left\|P_{n}^{(k)}\right\|$ and $\left\|P_{n}^{(k)}\right\|[\alpha, \beta]=\max _{a \leqslant x \leqslant \beta}\left|P_{n}^{(k)}(x)\right|$, $a<\alpha<\beta<b$. In a subsequent work we shall apply our results to the problem of lacunary approximation.

In this paper, P_{n}, Q_{n}, R_{n} will always denote algebraic polynomials of degree at most n. The sentence: "Let P_{n} be the polynomial of best approximation to $f \in C[a, b]$ " means that P_{n} is the polynomial of best approximation to f on $[a, b]$. All constants appearing in this paper depend on a and b.

We now state the theorems on which our study relies. Let $f \in \mathbb{C}^{N}[a, b]$, the subspace of $C[a, b]$ of N-times continuously differentiable functions; let $E_{n}(f)=\left\|P_{n}-f\right\|$.

Theorem 1.1 (Jackson [7, p. 127]). There exists a constant K, which depends on N, such that

$$
E_{n}(f) \leqslant \frac{K}{n^{N}} \omega\left(f^{(N)}, \frac{1}{n}\right), \quad n \geqslant 1 ;
$$

where $\omega(g)$ is the modulus of continuity of $g \in C[a, b]$.
Theorem 1.2 (Markoff inequality, [7, pp. 134-141]):

$$
\left\|P_{n}^{(k)}\right\| \leqslant M n^{2 k}\left\|P_{n}\right\|, \quad n \geqslant 1
$$

[^0]and Bernstein's Inequality ([7], page 133)
$$
\left\|P_{n}^{(k)}\right\|_{[\alpha, \beta]} \leqslant N n^{\hbar_{k}}\left\|P_{n}\right\|, \quad n \geqslant 1
$$

The constant M depends on k and the constant N depends on k, α, β.
Theorem 1.3 [3, p. 39]. There exists a constant K such that, iff $\in C^{\prime}[a, b]$,

$$
E_{n}(f) \leqslant \frac{K}{n} E_{n-1}\left(f^{\prime}\right), \quad n \geqslant 1
$$

The behavior of the derivatives of the trigonometric polynomial of best approximation has been investigated by Czipszer and Freud [2] and by Zamansky [10]. We show here that, with proper restrictions, some of their results can be extended to the algebraic case. See also $[4,6]$.

II. Convergence of the Sequence of Derivatives of the Polynomial of Best Approximation

In this section we study k 's for which $\lim _{n \rightarrow \infty}\left\|P_{n}^{(k)}-f^{(k)}\right\|_{[c, d]}=0$, $a \leqslant c<d \leqslant b$, as well as the corresponding speeds of convergence, where P_{n} is the polynomial of best approximation to $f \in C^{N}[a, b]$. The main results are Theorems 2.4 and 2.8.

Theorem 2.1. There exists a constant M with the following property: Let $f \in C[a, b]$ be such that, for some $\lambda, E_{n}(f) \leqslant \lambda / n, n \geqslant 1, E_{0}(f) \leqslant \lambda$. Then, for P_{n}, the polynomial of best approximation to f, one has:

$$
\left\|P_{n}^{\prime}\right\| \leqslant M \lambda n, \quad n \geqslant 1
$$

Proof. Let k be defined by $2^{k} \leqslant n<2^{k+1}$. Then

$$
P_{n}=P_{n}-P_{2^{k}}+\sum_{i=1}^{k}\left(P_{2^{i}}-P_{2^{i-1}}\right)+\left(P_{1}-P_{0}\right)+P_{0}
$$

By differentiating both sides of this identity and applying Markoff's inequality, we obtain:

$$
\left\|P_{n}^{\prime}\right\| \leqslant K\left(n^{2}\left\|P_{n}-P_{2}\right\|+\sum_{i=1}^{k} 2^{2 i}\left\|P_{2^{i}}-P_{2^{i-1}}\right\|+\left\|P_{1}-P_{0}\right\|\right)
$$

Now, for $l<m$,

$$
\left\|P_{m}-P_{l}\right\| \leqslant\left\|P_{m}-f\right\|+\left\|P_{l}-f\right\| \leqslant E_{m}(f)+E_{l}(f) \leqslant 2 E_{l}(f)
$$

hence

$$
\begin{aligned}
\left\|P_{n}^{\prime}\right\| & \leqslant K\left(2 n^{2} E_{2^{k}}(f)+\sum_{i=1}^{k} 2^{2 i-1} E_{2^{i-1}}(f)+2 E_{0}(f)\right) \\
& \leqslant K\left(2 \cdot 2^{2(k+1)} \frac{\lambda}{2^{k}}+\sum_{i=1}^{k} 2^{2 i \div 1} \frac{\lambda}{2^{i-1}}+2 \lambda\right) \\
& \leqslant K \lambda\left(42^{k}+4 \sum_{i=1}^{k} 2^{i}+2\right) \leqslant M \lambda n
\end{aligned}
$$

Theorem 2.2. There exists a constant M with the following property: if a function f satisfies $|f(x)-f(y)| \leqslant \lambda|x-y|, x, y \in[a, b]$, then for the polynomial P_{n} of best approximation to f,

$$
\left\|P_{n}^{\prime}\right\|_{i} \leqslant M \lambda n, \quad n \geqslant 1
$$

Proof. This is a direct consequence of Jackson's theorem and Theorem 2.1.

Theorem 2.3. Let k, N be integers with $0 \leqslant k \leqslant N$. There exists a constant M, depending on N, such that, if P_{n} is the polynomial of best approximation to $f \in C^{N}[a, b]$, then

$$
\left\|P_{n}^{(k)}-f^{(k)}\right\| \leqslant M n^{k} E_{n-k}\left(f^{(k)}\right), \quad n \geqslant k
$$

Proof. The theorem is true for $N=0$. Let $N \geqslant 0$ and suppose that

$$
\left\|P_{n}^{(k)}-h^{(k)}\right\| \leqslant M_{N} n^{k} E_{n-k}\left(h^{(k)}\right), \quad 0 \leqslant k \leqslant N, n \geqslant k,
$$

for every $h \in C^{N}[a, b]$, where P_{n} is the polynomial of best approximation to h. Let $f \in C^{N+1}[a, b]$. By the induction hypothesis, we have:

$$
\begin{equation*}
\left\|f^{(k+1)}-Q_{n-1}^{(k)}\right\| \leqslant M_{N} n^{k} E_{n-1-k}\left(f^{(x+1)}\right), \quad 0 \leqslant k \leqslant N, n \geqslant k \tag{1}
\end{equation*}
$$

where Q_{n-1} is the polynomial of best approximation to f^{\prime}. Let $g(x)=$ $f(x)-f(a)-\int_{a}^{x} Q_{n-1}(t) d t, x \in[a, b]$. Now, for $x, y \in[a, b]$, we have

$$
|g(x)-g(y)| \leqslant \int_{x x}^{y}\left|f^{\prime}(t)-Q_{n-1}(t)\right| d t \leqslant E_{n-1}\left(f^{\prime}\right)|x-y|
$$

That is, g satisfies Lipschitz condition with constant $E_{n-1}\left(f^{\prime}\right)$. Let R_{n} be the polynomial of best approximation to g. We have, by Theorem 2.2:

$$
\left\|R_{n}^{\prime}\right\| \leqslant K_{1} n E_{n-1}\left(f^{\prime}\right), \quad n \geqslant 1,
$$

and, by Markoff's inequality and Theorem 1.3:

$$
\begin{align*}
\left\|R_{n}^{(k)}\right\| & \leqslant K_{k} n n^{2(k-1)} E_{n-1}\left(f^{\prime}\right) \\
& \leqslant K_{k}^{\prime} \frac{n^{2 k-1}}{(n-1)(n-2) \cdots(n-(k-1))} E_{n-k}\left(f^{(k)}\right) \\
& \leqslant K_{k}^{n} n^{k} E_{n-k}\left(f^{(k)}\right), k \leqslant N+1, \quad n \geqslant k . \tag{2}
\end{align*}
$$

From (1) and (2) we conclude that

$$
\begin{aligned}
\left\|f^{(k)}-Q_{n}^{(k-1)}-R_{n}^{(k)}\right\| & \leqslant K_{I k}^{\prime \prime} n^{k} E_{n-k}\left(f^{(k)}\right)+M_{N} n^{k-1} E_{n-k}\left(f^{(k)}\right) \\
& \leqslant M_{N+1} n^{k} E_{n-k}\left(f^{(k)}\right), k \leqslant N+1, n \geqslant k
\end{aligned}
$$

The theorem follows because $-f(a)+\int_{a}^{x} Q_{n-1}(t) d t+R_{n}(x)$ is the polynomial of best approximation to f.

Theorem 2.4. Let k, N be integers with $0 \leqslant k \leqslant N / 2$. There exist constants S and T which depend on N such that, if $f \in C^{N}[a, b]$ and P_{n} is the polynomial of best approximation to f, then

$$
\left\|P_{n}^{(k)}-f^{(k)}\right\| \leqslant S E_{n-2 k}\left(f^{(\underline{\Omega} k)}\right) \leqslant T \frac{1}{n^{N-2 k}} E_{n-N}\left(f^{(N)}\right), \quad n \geqslant N
$$

Proof. This is a direct consequence of Theorems 1.3 and 2.3.
Corollary 2.5. Let k, N, f, P_{n} be as in Theorem 2.4. There exists a constant M, which depends on N, such that

$$
\left\|P_{n}^{(k)}-f^{(k)}\right\| \leqslant M \frac{1}{n^{N-2 k}} \omega\left(f^{(N)}, \frac{1}{n}\right), \quad n>N
$$

Proof. By Jackson's theorem and the properties of the modulus of continuity, we have, for $n>N$,

$$
E_{n-N}\left(f^{(N)}\right) \leqslant K \omega\left(f^{(N)}, \frac{1}{n-N}\right) \leqslant K\left(\frac{1}{n-N}+1\right) \omega\left(f^{(N)}, \frac{1}{n}\right)
$$

The corollary follows from Theorem 2.4.
Corollary 2.5 was obtained by Roulier [8]. We now show that Theorem 2.4 improves Corollary 2.5. We first need a preliminary result.

Proposition 2.6. Let $f(x)=(x+1)^{1 / 2}, x \in[-1,1]$. Then $E_{n}(f) \leqslant$ $K / n, n \geqslant 1$.

Proof. By [7, p. 120], $E_{n}(f)=E_{n}^{*}(f(\cos x))$ where E_{n}^{*} is the degree of approximation by trigonometric polynomials of order at most n. Now $(\cos x+1)^{1 / 2}=2^{1 / 2}|\cos x / 2|$ has a derivative bounded by $2^{1 / 2 / 2}$ (except at the odd multiples of π where the derivative does not exist). It follows that $\left\{(\cos x+1)^{1 / 2}-(\cos y+1)^{1 / 2}\left|\leqslant 2^{1 / 2} / 2\right| x-y \mid, \quad x, y \in[-1,1]\right.$. Now, Jackson's theorem [7, p. 84] implies that $\left.E_{n}^{*}(\cos x+1)^{1 / 2}\right) \leqslant K_{1} / n, n \geqslant 1$, and so $E_{n}\left((x+1)^{1 / 2}\right) \leqslant K / n, n \geqslant 1$.

Let $f(x)=(x-1)^{2}(x-1)^{1 / 2}, x \in[-1,1]$, so that $f^{\prime \prime}(x)=(15 / 4)(x+1)^{1 / 2}$. Corollary 2.5 implies that $\left\|P_{n}^{\prime}-f^{\prime}\right\| \leqslant M / n^{1 / 2}$, while Theorem 2.4 implies that $\left\|P_{n}^{\prime}-f^{\prime}\right\| \leqslant T / n$. Of course, there are functions for which Theorem 2.4 does not yield more information than Corollary 2.5 , for instance $f(x)=$ $x^{2}|x|, x \in[-1,1][7$, p. 171].

The remainder of this section is devoted to proving the analog of Theorem 2.4 where the norm of P_{n} is taken over a subinterval of $[a, b]$.

Theorem 2.7. Let $a<x<\beta<b$. There exists a constant M, depending on α and β, with the following property: if for a function f,

$$
|f(x)-f(y)| \leqslant \lambda|x-y|, \quad x, y \in[a, b]
$$

then

$$
\left\|P_{n}^{\prime}\right\|_{[\alpha, \beta]} \leqslant M \lambda, \quad n \geqslant 1
$$

where P_{i} is the polynomial of best approximation to f on $[a, b]$.
Proof. There exists a sequence of $\left(Q_{n}\right)$ of polynomials such that [3, p. 125]

$$
\left\|Q_{n}-f\right\| \leqslant \frac{N \lambda}{n} \text { and }\left\|Q_{n}^{\prime}\right\|_{[2, \beta]} \leqslant M \lambda, \quad n \geqslant 1
$$

where N depends on α and β.
Now

$$
\left\|P_{n}^{\prime}\right\|[\alpha, \beta] \leqslant\left\|P_{n}^{\prime}-Q_{n}^{\prime}\right\|[a, e] \div\left\|Q_{n}^{\prime}\right\|_{[\alpha, e]}
$$

and

$$
\begin{aligned}
\mid P_{n}^{\prime}-Q_{n}^{\prime} \|_{[\alpha, \theta]} & \leqslant K n\left\|P_{n}-Q_{n}\right\|_{[a, \dot{ }} \\
& \leqslant K n\left(E_{n}(f)+\frac{N \lambda}{n}\right) \\
& \leqslant K n\left(\frac{K_{1} \lambda}{n}+\frac{N \lambda}{n}\right), n \geqslant 1
\end{aligned}
$$

by Jackson's theorem and Bernstein's inequality. The theorem follows.
Theorem 2.8. Let $a<\alpha<\beta<b$ and let N and k be integers with
$0 \leqslant k \leqslant N$. There exists a constant M, which depends on N, α, β such that, if P_{n} is the polynomial of best approximation to $f \in C^{N}[a, b]$, then

$$
\left\|P_{n}^{(k)}-f^{(k)}\right\|_{[\alpha, \beta]} \leqslant M E_{n-k}\left(f^{(k)}\right), \quad n \geqslant k
$$

The proof of this theorem is similar to that of Theorem 2.3, but requires a more careful use of Bernstein's inequality. Theorem 2.8 is true for $N=0$. Suppose that

$$
\left\|P_{n}^{(k)}-h^{(k)}\right\|_{[\alpha, \beta]} \leqslant M_{N} E_{n-k}\left(h^{(k)}\right)
$$

for every $h \in C^{N}[a, b], 0 \leqslant k \leqslant N, n \geqslant k$.
Let $f \in C^{N+1}[a, b]$. By the induction hypothesis we have:

$$
\begin{equation*}
\left\|f^{(k+1)}-Q_{n-1}^{(k)}\right\|_{[\alpha, \beta]} \leqslant M_{N} E_{n-1-k}\left(f^{(k+1)}\right), \quad 0 \leqslant k \leqslant N, n \geqslant k \tag{3}
\end{equation*}
$$

where Q_{n-1} is the polynomial of best approximation to f^{\prime} on $[a, b]$.
Define g as in Theorem 2.3. Then g satisfies Lipschitz condition with constant $E_{n-1}\left(f^{\prime}\right)$. Let R_{n} be the polynomial of best approximation to g on $[a, b]$. We have, by Theorem 2.7,

$$
\left\|R_{n}^{\prime}\right\|_{[c, d]} \leqslant K_{1} E_{n-1}\left(f^{\prime}\right), \quad n \geqslant 1
$$

where $c=(a+\alpha) / 2, d=(\beta+b) / 2$.
By Bernstein's inequality and Theorem 1.3, we have:

$$
\begin{align*}
\left\|R_{n}^{(k)}\right\|_{[\alpha, \beta]} & \leqslant K_{k} n^{k-1}\left\|R_{n}^{\prime}\right\|_{[c, d]} \\
& \leqslant K_{k} K_{1} h^{k-1} E_{n-1}\left(f^{\prime}\right) \\
& \leqslant K_{k}^{\prime} \frac{n^{k-1}}{(n-1)(n-2) \cdots(n-(k-1))} E_{n-k}\left(f^{(k)}\right) \\
& \leqslant K_{k}^{\prime \prime 2} E_{n-k}\left(f^{(k)}\right), \quad k \leqslant N+1, n \geqslant k . \tag{4}
\end{align*}
$$

From (3) and (4) we conclude that

$$
\begin{aligned}
\left\|f^{(k)}-P_{n}^{(k)}\right\|_{[\alpha, \beta]} & =\left\|f^{(k)}-Q_{n}^{(k-1)}-R_{n}^{(k)}\right\|_{[\alpha, \beta]} \\
& \leqslant M_{N+1} E_{n-k}\left(f^{(k)}\right), \quad k \leqslant N+1, n \geqslant k
\end{aligned}
$$

III. Divergence of the Sequence of Derivatives of the Polynomial of Best Approximation

Let P_{n} be the polynomial of best approximation to $f \in C^{N}[a, b]$. We now investigate the behavior, as $n \rightarrow \infty$, of $\left\|P_{n}^{(k)}\right\|_{[c, a]}, a<c<d<b$ for the k 's which have not been considered in Section II.

Theorem 3.1. Let k, N be integers with $[N / 2]+1 \leqslant k \leqslant N$. Let $P_{n} b e$ the polynomial of best approximation to $f \in C^{N}[a, b]$. Then there exist constants M, M_{1}, M_{2} which depend on N, such that

$$
\begin{aligned}
\left\|P_{n}^{(k)}\right\| & \leqslant\left\|f^{(k)}\right\|+M_{1} n^{k} E_{n-k}\left(f^{(k)}\right) \\
& \leqslant\left\|f^{(k)}\right\|+M_{2} n^{2 k-N} E_{n-N}\left(f^{(N)}\right) \\
& \leqslant\left\|f^{(k)}\right\|+M n^{2 k-N} \omega\left(f^{(N)}, \frac{1}{n}\right), \quad n \geqslant N .
\end{aligned}
$$

Proof. This is a direct consequence of Theorems 2.3,1.3 and the properties of the modulus of continuity.

Theorem 3.2. Let k, N be integers with $k>N \geqslant 0$. Let $f \in C^{N}[a, b]$, f not a polynomial. Then there exists a constant M, which depends on k and f, such that, if P_{n} is the polynomial of best approximation to f,

$$
\left\|P_{n}^{(k)}\right\| \leqslant M n^{2 k-N} \omega\left(f^{(N)}, \frac{1}{n}\right), \quad n \geqslant 1
$$

We need two preliminary remarks: First $[9, p .100]$, if $f \in C[a, b]$ is not a constant, we have $\omega(f, 1 / n) \geqslant C / n, C>0, n \geqslant 1$. Second, let $f \in C^{N}[a, b]$, $c<a, d>b$. We can extend f to $g \in C^{N}[c, d]$ in such a way that $\omega\left(g^{(N)}, h\right) \leqslant$ $l \omega\left(f^{(N)}, h\right), h>0, l$ being a constant depending on f. Indeed, let $g(x)=$ $\sum_{n=0}^{N}\left(f^{(n)}(a) / n!\right)(x-a)^{n}$ if $c \leqslant x<a, g(x)=f(x)$ if $a \leqslant x \leqslant b$, and $g(x)=\sum_{n=0}^{N}\left(f^{(N)}(b) / n!\right)(x-b)^{n}$ if $b<x \leqslant d$. Then g is as required.

Proof of Theorem 3.2. Let c, d and g be as above. By Theorem 2.8, there exists a sequence of polynomials Q_{n} and a constant K such that

$$
\begin{aligned}
Q_{n}^{(k)}-g^{(k)} \|[e, \alpha] & \leqslant \frac{K}{n^{N-k}} \omega\left(g^{(N)}, \frac{1}{n}\right) \\
& \leqslant \frac{K l}{n^{N-k}} \omega\left(f^{(N)}, \frac{1}{n}\right), \quad k \leqslant N, \quad n \geqslant k+1 .
\end{aligned}
$$

It follows that $\left\|Q_{n}^{(k)}\right\|[c, a] \leqslant K_{k}^{\prime}, 0 \leqslant k \leqslant N$, and $\left\|Q_{n}^{(k)}\right\|[a, b] \leqslant K_{k}^{\prime \prime} \eta^{k-k}$, $k>N$, by Bernstein's inequality. So

$$
\left\|Q_{n}^{(k)}\right\|_{[a, b]} \leqslant \max \left(K_{k}^{\prime}, K_{k}^{\prime \prime} n^{k-N}\right), \quad k \geqslant 0
$$

Now we have, for $k \geqslant 0$:

$$
\left\|P_{n}^{(k)}\right\|_{[a, b]} \leqslant\left\|P_{n}^{(k)}-Q_{n}^{(k)}\right\|_{[a, b]}+\left\|Q_{n}^{(k)}\right\|_{[a, b]}
$$

Also

$$
\begin{aligned}
\left\|P_{n}^{(k)}-Q_{n}^{(k)}\right\|_{[a, b]} & \leqslant S_{k} n^{2 k}\left\|P_{n}-Q_{n}\right\|_{[a, b]} \\
& \leqslant N_{k} n^{2 k}\left(E_{n}(f)+\frac{K l}{n^{N}} \omega\left(f^{(N)}, \frac{1}{n}\right)\right)
\end{aligned}
$$

So Jackson's theorem yields:

$$
\left\|P_{n}^{(k)}\right\|_{[a, b]} \leqslant K_{k} l^{2 k-N} \omega\left(f^{(N)}, \frac{1}{n}\right)+\max \left(K_{k}^{\prime}, K_{k}^{n} h^{k-n}\right)
$$

But $\omega\left(f^{(N)}, 1 / n\right) \geqslant C / n$ because $f^{(N)}$ is not a constant. It follows that

$$
\begin{aligned}
\left\|P_{n}^{(k)}\right\|_{\{a, b]} & \leqslant K_{k} l n^{2 k-N} \omega\left(f^{(N)}, \frac{1}{n}\right)+C_{n} \omega\left(f^{(N)}, \frac{1}{n}\right) \max \left(K_{k}^{\prime}, K_{k}^{n} n^{k-N}\right) \\
& \leqslant \omega\left(f^{(N)}, \frac{1}{n}\right)\left(K_{k} l 2^{2 k-N}+C_{n} \max \left(K_{l}^{\prime}, K_{k}^{\prime \prime} h^{k-N}\right)\right)
\end{aligned}
$$

But if $k \geqslant N+1$, then $2 k-N \geqslant k-N+1$. It follows that $\left\|P_{n}{ }^{k}\right\|_{[a, b]} \leqslant$ $M n^{2 k-N} \omega\left(f^{(N)}, 1 / n\right)$ for $k \geqslant N+1$.

Theorem 3.3. Let k, N be integers with $k>N \geqslant 0$. Let $a<\alpha<\beta<b$, $0<\epsilon \leqslant 1$ and $K>0$. Let $\left|f^{(N)}(x)-f^{(N)}(y)\right| \leqslant K|x-y|^{\epsilon}, x, y \in[a, b]$. There exists a constant M which depends on α, β, K, k, N such that, if P_{n} is the polynomial of best approximation to f on $[a, b]$,

$$
\left\|P_{n}^{(k)}\right\|_{[\alpha, \beta]} \leqslant M n^{k-N-\epsilon}, \quad n \geqslant 1 .
$$

We first exclude the possibility $k=N+\epsilon$. Let l be defined by $2^{l} \leqslant n<$ 2^{l+1}.

Then

$$
P_{n}=P_{n}-P_{2^{i}}+\sum_{i=1}^{l}\left(P_{2^{i}}-P_{2^{i-1}}\right)+\left(P_{1}-P_{0}\right)+P_{1}
$$

By Bernstein's inequality and Jackson's theorem, we obtain, as in the proof of Theorem 2.1:

$$
\left\|P_{n}^{(n)}\right\|_{[\alpha, \beta]} \leqslant R_{k}\left(n^{k}\left\|P_{n}-P_{2^{2}}\right\|+\sum_{i=1}^{l}{ }^{k i}\left\|P_{2^{i}}-P_{2^{i-1}}\right\|+\left\|P_{i}-P_{0}\right\|\right)
$$

and

The theorem is proved for $k \neq N+\epsilon$.

We now prove the theorem for $k=N+1$ and for $a=-1, b=1$. The general case is reduced to this by the transformation $x+\frac{1}{2}(n-a) x+-$ $\frac{1}{2}(b+a)$. Let $g(x)=f(\cos x), x \in[-\pi, \pi]$. Then

$$
\left|g^{(N)}(x)-g^{(N)}(y)\right| \leqslant K^{\prime}|x-y|, \quad x, y \subseteq(-\pi, \pi)
$$

Now, there exists a sequence of even positive kernels K_{n} such that $\int_{-\Pi}^{\Pi} K_{n}(t) d t=1$,

$$
T_{n}(x)=-\int_{-\pi}^{\pi} K_{n}(t) \sum_{i=1}^{k}(-1)^{i}\binom{k}{i} g(x+i t) d t
$$

is a trigonometric polynomial of degree n, and

$$
\left\|g-T_{n}\right\| \leqslant M^{\prime} n^{-k} \quad[5, \text { p. } 57]
$$

It follows that

$$
\left\|T_{n}^{(j)}\right\| \leqslant \sum_{i=1}^{k}\binom{k}{i} \int_{-\pi}^{\pi}\left|g^{(j)}(x+i t)\right| d t \leqslant K_{j}, \quad 1 \leqslant j \leqslant k
$$

(The case $j=k$ follows from the fact that $g^{(k)}$ exists almost everywhere and is bounded.) Let $Q_{n}(x)=T_{n}(\operatorname{arcos} x), x \in[-1,1]$. Because g and K_{n} are even, T_{n} is even and so Q_{n} is an algebraic polynomial. Now

$$
Q_{n}^{(k)}(x)=\sum_{i=1}^{k} T_{n}^{(i)}(\operatorname{arcos} x) V_{i}(x) W_{i}\left(\left(1-x^{2}\right)^{-1 / 2}\right)
$$

where V_{i} and W_{i} are algebraic polynomials of degree bounded by $k-1$ and $2 k-1$ respectively. It follows that, if $-1<\alpha<\beta<1$, then

$$
\left\|Q_{n}^{(k)}\right\|_{[\alpha, \beta]} \leqslant K^{\prime \prime}
$$

Also

$$
\left\|P_{n}^{(k)}\right\|_{[\alpha, \beta]} \leqslant\left\|P_{n}^{\left(k_{k}\right)}-Q_{n}^{(k)}\right\|_{[\alpha, \beta]}+\left\|Q_{n}^{(k)}\right\|_{[\alpha, \beta]}
$$

and

$$
\begin{aligned}
\left\|P_{n}^{(k)}-Q_{n}^{(k)}\right\|_{[\alpha, \beta]} & \leqslant K n^{k}\left\|P_{n}-Q_{n}\right\|_{[-1,1]} \\
& \leqslant K n^{k}\left(E_{n}(f)+M n^{-k}\right) \\
& \leqslant K n^{k}\left(K_{2} n^{-k}+K_{1} n^{-k}\right)
\end{aligned}
$$

by Jackson's theorem and Bernstein's inequality. The proof of the theorem is complete.

IV. Remarks and Open Questions

We can somewhat generalize Theorems 2.4 and 2.8: If $f \in C^{N}[a, b]$ and $\left\|P_{n}-f\right\|=O\left(E_{n}(f)\right)$, then $\left\|P_{n}^{\left(k_{k}\right)}-f^{(k)}\right\|=O\left(E_{n-2 k}\left(f^{2 k}\right)\right), 0 \leqslant k \leqslant N / 2$, and $\quad\left\|P_{n}^{(k)}-f^{(k)}\right\|_{[\alpha, \beta]}=O\left(E_{n-k}\left(f^{(k)}\right)\right), \quad 0 \leqslant k \leqslant N, \quad a<\alpha<\beta<b$. Theorem 2.8 extends to the trigonometric case. Let C^{N} be the space of everywhere N-times continuously differentiable functions of period 2π. If $\left\|T_{n}-f\right\|_{[-\pi, \pi]}=O\left(E_{n}^{*}(f)\right)$, then $\left\|T_{n}^{(k)}-f^{(k)}\right\|_{[-\pi, \pi]}=O\left(E_{n}^{*}\left(f^{(k)}\right)\right), 0 \leqslant$ $k \leqslant N$, where T_{n} is a trigonometric polynomial of degree at most n and $E_{n}^{*}(f)$ is the degree of approximation by such polynomials.

Indeed, it suffices to notice that Theorem 2.7 holds true for the trigonometric case, to use the corresponding Bernstein's inequality [7, p. 90], $\left\|T_{n}^{\prime}\right\| \leqslant n\left\|T_{n}\right\|$, and to observe that $E_{n}^{*}(f) \leqslant(K / n) E_{n}^{*}\left(f^{\prime}\right)$ if $f \in C^{\prime}[-\pi, \pi]$. The last result was found by Czipszer and Freud [2]. Similarly, by using the above quoted inequality in the proof of Theorem 3.4, we obtain that if $f \in C^{N}[-\pi, \pi], k>N>0,0<\epsilon \leqslant 1$ and $\left|f^{(N)}(x)-f^{(N)}(y)\right| \leqslant K|x-y|^{\epsilon}$, $x, y \in[-\pi, \pi]$, then there is a constant M which depends on k and f such that, if $\left\|T_{n}-f\right\|=E_{n}^{*}(f)$, then $\left\|T_{n}^{(k)}\right\| \leqslant M m^{k-N+\epsilon}, n \geqslant 1$. For related results see [4].

Let $f \in C^{N}[-\pi, \pi], k>N \geqslant 0$. We conjecture that there is no constant M which depends only on k and f such that if $\left\|T_{n}-f\right\|=E_{n}^{*}(f)$, then $\left\|T_{n}^{(k)}\right\| \leqslant M n^{k-N} \omega\left(f^{(N)}, 1 / n\right), n \geqslant 1$. Similarly for the algebraic case.

We make also the following conjecture: for every $N>1$ there exists $f \in C^{2 N-1}[a, b]$ such that, for all $k, N \leqslant k \leqslant 2 N-1, P^{(k)}(a)$ does not converge to $f^{(k)}(a)$, where P_{n} is the polynomial of best approximation to f.

It is interesting to notice that we cannot replace the hypothesis of Theorem 2.7 by those of Theorem 2.1. Indeed, we have

Theorem 4.1. Let a $\alpha \alpha<\beta<b$, and let $\lambda>0$. There exists a constant M which depends on α, β, λ, with the following property: let $f \in C[a, b]$ satisfy $E_{n}(f) \leqslant \lambda / n, n \geqslant 1 ; E_{0}(f) \leqslant \lambda$. Then, for the polynomial P_{n} of best approximation to f, one has:

$$
\left\|P_{n}^{\prime}\right\|_{[a, \beta]} \leqslant M \log n, \quad n \geqslant 2 .
$$

The proof is almost exactly the same as the first part of the proof of Theorem 3.4.

The next theorem illustrates Theorem 4.1.
Theorem 4.2. There exists a function $f \in C[-1,1]$ such that $E_{n}(f) \leqslant K / n$ and, if P_{n} is the polynomial of best approximation to f on $[-1,1],\left\|P_{n}^{\prime}\right\|_{\alpha, \beta]} \geqslant$ $K \log n, n=1,2, \ldots$, whenever $-1<\alpha<\beta<1$.

Proof. Let $f(x)=\sum_{k=0}^{\infty} 5^{-k} T_{5 k}(x)$, where $T_{n}(x)=\cos (n \operatorname{arcos} x)$. For this function we have [11] $E_{n}(f) \leqslant K / n$. On the other hand,

$$
\begin{equation*}
P_{5^{n}}(x)=\sum_{k=0}^{n} 5^{-k} T_{\mathrm{s}^{2}}(x) \tag{4.1}
\end{equation*}
$$

is the polynomial of degree at most 5^{n} of best approximation to f (see [7, p. 127]). Since

$$
P_{5^{k}}^{\prime}(x)=\sum_{k=0}^{n} \sin \left(5^{k} \operatorname{arcos} x\right) \frac{1}{\left(1-x^{2}\right)^{घ^{1 / 2}}}
$$

and $5^{k} \equiv 1(\bmod 4)$,

$$
P_{5^{\prime}}^{\prime}(0)=\sum_{k=0}^{n} 1=(n+1) .
$$

As $P_{5^{n}}(x)$ is the polynomial of degree $\leqslant k$ of best approximation to f, for $k=5^{n}, 5^{n}+1, \ldots, 5^{n+1}-1[1$, p. 127], the theorem follows.

Acknowledgmenis

I am indebted to Professors G. G. Lorentz and O. Shisha for their valuable suggestions.

References

1. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
2. J. Czieszer and G. Freud, Sur l'approximation d'une fonction periodique et de ses dérivées successives par un polynome et par ses dérivées successives, Acta Math. 99 (1958), 33-51.
3. R. P. Feinerman and D. J. Newman, "Polynomial Approximation," Wiliams \& Wilkins, Baltimore, 1974.
4. A. L. Garkavi, Simultaneous approximation to a periodic function and its derivatives by trigonometric polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 103-128.
5. G. G. Lorentz, "Approximation of Functions," Holt, Rinehart \& Winston, New York, 1966.
6. V. N. Malozemov, Simultaneous approximation of a function and its derivatives by algebraic polynomials, Dokl. Akad. Nauk SSSR Ser. Mat. 170 (1960), 773-775.
7. I. P. Natanson, "Constructive Function Theory," Vol. I. Ungar, New York, 1964.
8. J. A. Rovlier, Best approximation to functions with restricted derivatives, J. $A p$ Approximation Theory 17 (1976), 344-347.
9. A. F. Timan, "Theory of Approximation of Functions of a Real Variable," Mac Millan, New York, 1963.
10. M. Zamansky, Sur l'approximation des fonctions continues, C. R. Acad. Sci. Paris 224 (Jan.-Juin 1947), 704-706.
11. A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47-76.

[^0]: * Current address: Department of Mathematics, Texas A\&M University, College Station, Texas 77843.

